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FOREWORD 

This Technical Report was prepared by RCA Laboratories, Princeton, 

New Jersey, under Contract No. F3O6O2-72-C-0486.  It describes work 

performed from April 1973 to August 15 1973 in the Communications Research 

Laboratory, Dr. K. H. Powers, Director. The principal investigator and 

project scientist was Dr. D. A. de Wolf. 

The report was submitted by the author in A-igust 1973.  Submission 

of the report does not constitute Air Force approval of the report's 

findings or conclusions.  It is submitted only for the exchange an.! 

stimulation of ideas. 
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SUMMARY AND ABSTRACT 

This Final Report of Contract No. F30602-72-C-0486 regarding the 

behavior of laser beams in turbulent air extends results summarized in 

a previous report (RADC-TR-73-162).  It is shown that amplitude scintil- 

lation is unimportant in focused beams, and dominant in collimated and 

diverging beams.  The limitations of an existing numerical procedure for 

computing these are investigated.  Intermittency of turbulence is rede- 

fine! in terms o? large-scale variations in the refractive-index struc- 

ture constant and the dependei.ce upon averaging time is determined.  It 

is concluded that intermittency is essentially an extra randomness dur- 

ing operation of the laser for short periods (of several minutes or 

less).  Significant fluctuation rates are defined for angle of arrival, 

Hhase, and amplitude.  They differ greatly. 
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1.     INTRODUCTI' N 

This   is   the  Final   Reprrt  of  the   RCA  effort  on  the effect  of  turbu- 

lence   instabilities  on   laser  propagation  under contract   no. 

F30602-72-C-0486 to  Rome Air  Development   Center.     Previous  reports   under 

this  and  under  the preceding effort   (contract  No.   F30602-71-C-0356)  are 

summarized   [1]   in  the   list  of references,   and  they will   be  referred   to 

as  TRI   to  TRVIII   in chronological   order. 

Aside   from previously  reported  developments   in TRI-TRVII,   also   sum- 

marized   in  TRVIII,   this work has   led   to   the   following developments:   In 

section   3,   a  generalization of the  Pythagorean  sum of  focal-spot     area 

and   induced  broadening by turculent  air   is  given  for any  image  plane   of 

a gaussian  beam   (diverging,   collimated,   or  focusing).     We  prove   in  sec- 

tion A   that   amplitude  scintillation  in   the   focal  plane  of a  focused  beam 

is  negligible,   and  therefore  restrict   the  analytical  development   of 

laser-beam  irradiance  to  the  Rytov  approximation  in  that  case.     Except 

for exceptional  situations,   the preceding saturation-regime calculations 

for plane  and  spherical  waves  suffice   for  non-focused  beams.     Herrmann 

and  Bradley's  numerical  procedure  is   investigated  in section 5 and   it 

is  shown  that   this  procedure  cannot  predict   large amplitude  fluctuations. 

The  problem of  infermittency  is discussed   in section  6.     The power  spec- 

trum of C       at  lew wave numbers  is   its  determining  factor,  and we  con- 

clude  that   intermittency must be regarded  as  an unpredictable random 

effect   governed  by  long-term statistics   in view  of  the   fact  that   the   above- 

mentioned  power spectrum is  highly specific  to terrain and  local weather 

conditions.     The  idea that  the angle-of-arrival  spectrum can yield  micro- 

sea^   information unfortunately must   be  abandoned   (section  7).     However 

in section  8 we  show  that   important   fluctuation rates  of angle of arrival 

amplitude     and  phase  can be defined  and   computed.     Section 2  is  an  intro- 

duction  to   Mie  problems  defined  in  the whole effort,   and  to the  method 

of solution:   it  serves  as  an aid to  the  reader who does  not wish  to   im- 

merse  himself  in all  the details of previous  reports  and work. 
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2.  INTRODUCTION TO THE LASER-BEAM PROPAGATION PROBLEM 

The work of the contract effort of which this is the Final Report 

is centered around the problem of forming an image in the plane z = L 

of a laser beam originating at z = 0.  The beam must travel through 

(possibly turbulent) air.  One might distinguish between three aspects 

of the problem: 

(i) The optics of imaging a source at z = 0 in the plane z = L in the 

idealized case of free space between source and image.  Thus, one 

might consider what optical functions (e.g., mutual transfer func- 

tion, point spread function, etc.) give optimal information about 

the source or the imaged object. 

(ii) The effect upon the imaging process of the air through which the 

beam travels from source to image plane.  Air can absorb energy 

from laser beams; aerosols and other particulate matter can scat- 

ter energy out of the beam, and inhomogeneities in the gaseous 

properties (e.g., in temperature, density, water-vapor content) 

can give rise to deflection of rays. All of these effects influ- 

ence the shape of the image. 

(iii) The nature of the source or of the object to be imaged.  In our 

work, the source is nearly always the output of a laser, and hence 

it is the shape of the transmitted laser beam that plays the role 

of a separate input to the problem. 

The distinction has been overemphasized.  Figure 1 illustrates the 

most important aspect of the problem: the interaction of light rays with 

air.  A host of effects occuis even when the intensity is not extremely 

high (we have not sketched in an equally large host of other effects such 

as air breakdown which occur at extremely high intensities).  It is im- 

portant to realize, however, that the beam quality mentioned in (iii), 

i.e., whether one uses focused beams, or whether the beam is gaussian 

with or without truncation, has a definite effect upon the beam quality. 

For example, a highly focused beam will create higher intensities at the 

focal spot, and one might well expect intensity-dependent distortions 

such as thermal bending and blooming of these to occur more readily than 
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of diverging beams.  We shall see that the nature of turbulence-induced 

distortions is influenced importantly by beam shape.  Also, the distor- 

tion of the image »ill or will not be important depending upon what as- 

pects of the image are important in applications (tracking, weaponry, 

illumination, etc.), *.,d consequently the study of which optical parameter 

should be considered [as indicated under (i)l is also of some importance. 

A unified mathematical description of all of these aspects is based 

upon the concept of the electric field E(r) at a location"? = (J L) in 

the image plane.  Under a number of not overly restrictive conditions 

(to be discussed later), it is given by 

K(r) = L_1expfik(L + . 2/2L) 

y ik f ,2 -» *    -* ik. 
r- Li J     I, (L ' ^ 'ik' ^ i/Ll    >        C2.1) 

where  ^   -   (^,0)   is  a  point  on  the  aperture  plane.     The  other  symbol 
are: 

k   = w/c   = 2n/A 

L 

R 

wavenumber of   jhe   laser radiation   (w  ■  frequency, 

A   = wavelength). 

propagation distance 

radius  of curvature of the  phase  front  at   z  =  Q   •   R > 0 

for a  focused  beam). 

aperture or pupil function 

the ratio of the electric field at r due co a point 

source at r in air to that in free space. 

The optical imaging properties we desire depend upon the use v>e make 

of Eq. (2.1).  We may be interested in its phase properties (e.g., for 

angular deviations) or its intensity pattern (e.g., for illumination or 

for weapon uses).  The nature of the beam is contained in the choice of 
-» 

R and of U (r ).  For an untruncated gaussian beam, one has 
.A 2   2 9 

Uo(r1) = exp(-p1 /ro ), where ro  is an effective radius-variance pa- 

rameter.  For some applications it is more appropriate to ta^e U (r ) = 
■* o l 

const, for pj < t^  and IM^) = 0 for p. > r : this choice yields the 

weli-known Airy diffraction pattern in the focal plane (R = L) of a 

focused beam.  The most crucial aspect of the program - the interaction 
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of laser beams with (..arbu lent) air - is hidden in the function t(ttt,)', 

the response to a spherically symmetric point source in turbulent air. 

The distinction (i)-(iii) has been useful to the extent that it 

allows us to separate beam and imaging problems from the air-wave inter- 

action.  It is a great simplification to study this interaction for only 

a spherical-wave source.  Nevertheless, we will not adhere rigidly to this 

way of separating the problems; for some cases it will be easier to look 

at the  interaction of air with beam waves. 

Consider the basic interaction problem.  A quasi-monochromatic point 

source at r. =0 yields an electric field E that satisfies the equation, 
1    J o 

V E + k E ■ -6(r) 
o     o 

(2.2) 

where ü(r) is a Dirac-delta function.  The free-space sohtion for K 
•►    -1      0 

is (aside from some constant factors involving n) E (r) *, r exp(ikr), 

In air we have 

-»2    2  *        * 
V E + k t(r,t)E = -t.(r) , (2.3) 

where L(r,t) is the dielectric permittivity.  The equation is approxi- 

mate to the extent that it ignores terms of order de(rft)/h)dt as well 

as terms of order k | Vt; (r, t) |/c (r, t).  Optical spatial and temporal fre- 

quencies are so high that such approximations are warranted.  Workers 

in optics often prefer to use the refractive index n(r,t) by substituting 

((r.t) = n (r,t) in Eq. (2.3). Obviously, the source function - a delta 

function in this case - can be eliminated by subtraction of Eq. (2.2) 

from Eq. (2.3), and the electric field E can be expressed in terms nt 
.* -» 

E .  If the source is at r , then both E and E are functions of r and 
o o 0 .* A 

r .  The previously mentioned normalized field B(r,ro) is simply the ratio 

E(r,r )/E (r,r ). 
o ' o   o 
It is possible to simplify Eqs. (2.2) and (2.3) by utilizing the ex- 

tremely small size of optical wavelengths wth respect to scale sizes of 

variations in i:(r,t).     Under the so-called paraxial approximations, a 

parabolic equation for B(r,t) can be developed, namely 

V^B + 2ik(r.V - -)B + k26f:B = 0 
T r 

(2.4) 
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where V is the gradient-operator component transverse to the radial di- 

rection, and 6e is the deviation of f (r,t) from unity.  This equation, 

and its plane-wave corollary, which differs from Eq. (2,4) to the extent 

that (r.V - r  ) is replaced by d/dz,   have been studied extensively by 

workers in propagation of waves through air. 

The permittivity deviation bE(r,t) in Eq. (2.4) is determined by 

the refractive index n(r,t).  In air, at optical frequencies, the latter 

is given by 

n(?,t) = 1 + 10"6(1 + O.0075A"2) x 77.6 p (r,t)/T(r,t) (2.5) 

where pressure p is given in millibars, temperature T in degrees Kelvin, 

and wavelength A in \m.     The main cause of variations in n(r,t) are those 

in the temperature.  The so-called non-linear variations in T due to air 

heating by the laser beam itself are not the tupic of this contract effort. 

Rather, the irregular fluctuations in T caused by turbulence - particularly 

of the boundary-layer type - are the subject of this work.  Thus an at- 

mospheric model for turbulence, possibly homogeneous turbulence, at 

altitude x is required.  Tatarski [21 has elaborated on the connection 

between temperature and refractive-index statistics.  Aside from constant 

factors one is given by the other.  Consider therefore the Fourier trans- 

form of the covariance of the dielectric permittivity 

•(K) = yd3,'\jr<6e(r,t)6e(r + ,A?,t)> exp(iK.Ar) (2.6) 

'• V.-e r is a point at altitude <•  The atmospheric-turbulence model spec- 

ifies a spectrum. 

*(K) - 32TT
3
 x 0.033 C 2(x)(K2+L "2)"11/6exp(-K2/K 2)  ,      (2.7) 

n        o ' m   ' 

where macroscale L is presumably a function of x, microscale {  is re- 
0 -12° 

lated to <  by the relationship I     = 5.92K   , and C  (x) is the refrac- 
m o       m '     n 

tive-index structure constant related to its sea-level value [31 by the 

relationship 

Cn
2(x) = Cn

2(xo)(To/T)
2(xo/x)

2/3(l + x/y"2/3 

x exp[-2(x-xo)/hl   , (2.8) 
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where x = 1 m and T are sea-level values of effective altitude and tempera- 
o o 

ture, and • 7Ä. is the Monin-Obukhov length (8. -► ^ at dawn and dusk, and 
s ° s 

I    ^  1.5 m at midday for well-developed turbulence).  The structure func- 
s    2 

tion C  (x) can be obtained from temperati-re-variation measurements, and 
n        -1 the microscale K       , although harder to estimate, enters into the calcu- 

m ' 
lations in such a manner that an error of a factor two or so in its mag- 

nitude is not serious.  The macroscale L varies rnore but it often drops 
o 

out of the end result. 

These considerations, while not complete, give the essential inputs 

to the calculations made undei the auspices of this program.  A previous 

report TRVIII [l] gives a summary of results obtained up to February 1973. 

Ensuing work will be discussed from here on. 
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GENER/'LIZATION OF THE FOCAL-SPOT BROADENING RESULT 

Laser beams cannot focus into a point image because diffraction at 

the edges of the aperture through an angle g. ~ l/kr yields a blurring 

at distance L of order LQ_,  -  L/kr  (remember that r  is d measure of the 
d   '  o o 

aperture radius).  In turbulent air, the angle 0  is randomly modified 
2  1/3 

into 6. f 66, and 66 has a variance of the order of C LK '  in homo- 
d    ' n  m 

geneousiy turbulent air (e.g., for horizontal propagation).  The focal 

spot is broadened in area on the average. 

In TRI, we defined an aperture radius for arbitrary aperture func- 

tion U (r,) - see Eq. (2.1) - thrcugh tie definition 
o  1 

r  "2   2  -fd2o,V t2" / f]2rV Ö o J       loTerJ        o o 
(3.1) 

This definition corresponds to the one-digma width of an untruncated gaussian 

aperture function, U (r1) = exp(-r /r  ).  The integration and the gra- 

dient operator in Eq. (3.1) pertain to the two variables in the z = 0 

plane.  An irradiance-weighted radius r was defined in the plane z = L 

by means of an integral, 

rL
2   = /d2nD2<I(?,L)>//d2p< I(P,L)    > 

(3.2) 

and a free-space equivalent, r  , is defined similarly by utilizing 

I (p,L) instead of  I(p,L)  .  Actually, some first-moment integrals 

need to be subtracted, but they are zero for axially symmetric. UCP^) 

and for homogeneous turbulence.  With these definitions, we obtained a 

very general result, 

= rT 
2 + U*2 x 0.033L2K 

Lo m 1/3/ 

2„ 2. , 
ds s C  (s) 

n 
(3.3) 

for an axial path from s = 0 to s = L.  For horizontal propagation, 
00     2       2 3 l/3 

r -r 9 t        « 1.3C 4. K   •  Conditions for validity were given m 
L  o  _  LB       n   m 

TRI, and comparisons with other foc-:l-area definitions were made in TRIV. 

The above definition requires care because r , hence also r , become 

infinite for sharply truncated beams.  This difficulty is easily circum- 
2   2=2 

vented in practice by processing for r -r   - r   (which is always 

finite) but the definition weights the side-lobe structure unduly.  On 
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the other hanJ,  r    2  has  fundamental  significance as  the  "displaced  area" 

of  the   focal   spot   due  to  average  turbulence  broadening.     It   is  given   in 

Eq.   (3.3)   for the   focal   pianr.     We will   now  generalize   it  to any  image 

plane. 
Schmeltzer [4] has given the following form for the electric field 

of a gaussian laser mode in the plane z and close to the axis: 

2 
I Eo(r) —^—z  exp[ikz + ik!,V2(2-ikw ) 

z-ikw (3.4) 

-2    -2     -1 
w  S r   + ikR 

o 

This expression is subject to 

(i) kz » 1 

(ii) z « kr 

( 
3      4\ 

iii) z » kro I 

(iv) z3 » kp4 ) 

: radiation-zone ». i 'ition 

: near field of t  aperture 

: sagittal conditions 

Conditions vi)-(iv) are sufficiently liberal to include all of the image 

in mest cases when the propagation distance is at least a few hundred 

yards.  It can be seen from the absolute square of \fot  after straight- 

forward algebraic manipulation, that 

! (?) = (kr^/zHl + (l-z/R)2^2/^)2]'1 

x exp{-(krop/z)
2/fl + (l-z/R)2(kro

2/z) ]} 

2  2 
Thus, the free-space intensity at ? = (p,t) is s^ill a gaussian "  exp(-: jr^   ) 

where r  is another constant radius determined from Eq. 0.5).  The deri- 

vation of Eq. (3.3) from Eq. (3.2) is practically .he rame, except that ^ 

we obtain ^(z) instead of r^ to get the reou..: t^    = rLo (z) + rLB 

with 

2.2 

^Lo 
'(z) = r/td-»/») + (zAro )"] (3.6) 

where r 2 is given by the second term of Eq. (3.3).  This result is 

valid at any plane z = const [subject to the conditions (i)-(iv)].  In 

that sense, it is more general than Eq. (3.3), but it is less general in 

the sense that a gaussian mode has been assumed for the aperture function 

--■--   



U  (r).     Note  that  Eq.   (3.4)  results   from Eq.   (2.1) upon  inserting 
o  A 2      2 

U  (r  )  = exp(-n1  /r     )   into the  latter equation. 

At  z  = L  = R, we obtair.  from Eq.   0.6)  the  p? evious  result.     For 

collimated  beams   (R ♦ 00), we  note that     diffract.on is usually a  small 
2 2 2 

edge  effect  because  rT     (z)  = r      +   (z/kr  )     in that  case,  and  because 0 Lo o o 
z/kr      «  1  so  that  r,   (z)  ~ r  .     Our previous  studies   (see Fig.   3 of 
'      o Lo o 

TRVIII)  have  shown tlat  r .  « r    for most  casvo.     Therefore,   in the  case 
LB    o 

of collimated beams - and certainly for diverging beams - the beam- 

broadening effect is less important.  In those cases, amplittdo scintil- 

lations are the dominant intensity effect.  This immediately poses the 

question: do amplitude scintillations then also plav an important role 

in the focal plane of a focused beam? Evidently, from Eqs. (3.3) and 

the preceding qualitative explanation on the basis of refractive bending 

of rays superimposed upc^. the tree-space diffraef'-n effect, phase effects 

are important.  This q-.estion is answered in the next section. 

10 
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BEAM WAVE IRRADIANCE AND PHASE IN TURBULENT AIR 

We shall deal here with amplit; de scirtillation in the focal plan'. 

Previously, we developed a comp/ehensive theory for plane waves (TRV and 

TRVI) and for spherical waves (TRV1*).  These theories ar« important for 

crllimated and diverging beams respectively wher  (see previous section) 

we have shown that refractive (i.e., phase) effects are only important 

at the edge of the beam.  Vv? shall derive a Rylov approximation for 

gat'ssian-beam waves analogras to the development in sectiont; 1 and 2 of 

TRV for plane waves and in s ction 2 of TRVII for spherical waves.  It 

appears useful to give a very abbreviated review of the steps of the 

derivation.  First of all we note that the normalized field B car be written 

as a sum. 

B = 1 + B1 + B + B3 +   

Bn ■ f4\Q(it*lHt(tl)-~--f4\G(tnmVtn)6titn)    , 
(4.1) 

where G(r,r   )   is  a Green's  function  for beam waves   (all  trivial  factors 

can be absorbed  in G).     The next  step consists  of utilizing  the  small- 

angle  scattering  properties  of  6e which imply  that  r     ,-r    makes   only 

a small  angle with the z  axis.     By means  of q  stationary-phase analysis 

(or  a  steepest-descent  method     one  can  perform all   the  transverse   inte- 

sor 

n-1 

grations   in   (4.1)  to obtain  formally something  like 
z 

Bn =   /dz1f(:-1)6e(0,z1)----y       dznf(zr^e(r,zn)g(z1 —zn)    , 

(4.2) 

where f(z ) is a- function resulting from (4.1) after the transverse in- ■ 
tegrations.  The problem is that there is also an inseparable exponential 

function of z, z which we denote by g(z z ) that prevents us from 
in In 

separating the integrations over dz  (1 £m £n) in general.  The Rytov 

approximation is obtained bv finding the conditions under which 

g(z1—z ) = 1.  In that case (4.2) reduces to 
l   n 

1 i"1 n 
(4.3) 

11 

^mm ^MOMl .MMMHMMH '"— IM.^II. ■iii.in .n   . . ■ 



and upon summation over n as in (4.1) we obtain 
L 

B = exp[ / dzf(z)(cE(ü>z)] (4.4) 

We have abbreviated the actual procedure too much because it really has 

been carried out for moments of B rather than for B - thus yielding energy 

conservation which Eq. (4.4) does not yield - and we have omitted some 

intermediate extra steps such as utilizing transverse Fourier transforms 

and many statistical properties of 6ef  but the many details of the analysis 

are given in the above references (and exhaustively in TRIII). 

Let us now give the details of this procedure for gaussian laser 

modes given by Eq. (3.4).  Referring to section 2 of TRIII, we note that 

the beam-wave Green's function Gh(r,? ) is given by 

V'V = v^vV/v") (4.5) 

where E is given by Eq. (3.4), and G (r-r.) by Eq. (2.7) of TRIII.  This 
• p   j. 

Green's function is now gernune in Eq. (3.1) of TRIII.  In order to per- 
2 

form the d a integrations ir that equation, we perform a stationary- 

phase (steepest-descent) aus lysis on the integrand as in section 6 of 

TRIII.  The statlonary-phast function in the exponent of the integrand 

is 

* - kfA.. ;! + Az 2)1/2 + o 2/2Z - P */2M    ,1-1 .0 11      m     m       m '  m h m-1 '  m-1  m m 

[l -Ikw-] 
m 

r "2 + ikR-1 
o 

(4.6) 

m 
The points of stationary phast  are found by setting the gradient of f 

with respect to p^ equal to zero.  A result very close t ■> the spherical 

wave result of TRVII [Eq. (2)] 1  found: 

An/Ar = -Q /k + o /z 
nr  m    nr    n' n (4.7) 

The notation is consistent with previous work, and the interpreta- 

tion of Eq. (4.7) is practically Identical to that of Eq. (2) of TRVII. 

Again, small-angle scattering determines the physics, and small-angle 

MB „a^nriHMaa iHKMt <**—*  



approximations in Eq. (4.6) are permissible, yielding after some rearrange- 

ment : 

2 
T 
m ' 2 

2 Z i /P i ? \ m m-I I m-1 m \ 
z .-z Iz , z / 
m-1  m \ m-1 m / 

K -D m m 
(4.8. 

This result is also quite parallel to that for spherical waves 

From it, we derive, as in section 2 of "RVII but now for beam waves 

° is,   ^-1 

8^ o 
Bn " jSl 72 J 

dz. d2K.&z(K.,.'-.) 
J-7   J    3  J 

n 
x  n exP[-iKm

2(L-.:n)Z!T/2kZolexp[-iKm.Qmfl'(L-Zm)/k 

m=l 
n 

(4.9) 

Q ,/ E V  (Z./Z )K. nffl   .Ml  J 0    J 

Z = L-ikw 
o 

We obtain the normalized field B from (4.9) by summing over all in- 

teger n from n = 0 on.  Here too, as in section 17 of TRIIT■ the Rytov 

approximation (modified automatically so that energy is conserved) fol- 

lows if the second exponential in (4.9) is very close to unity.  In that 

case, the parameter {&X  S   can be shown to be [in analogy to Eq. (17.10) 

of TRI1I without the last exponential factor]: 

<5x2> .£. /*
,d./d«f(K).",c2n(l)(L-g)/k {l-cosrK2^(z)(L-z)/k]} 

r »   » (4.10) 

where we have utilized the real functions ^(z) and n(z) from the defin- 

ition, 

z-ikw s C(z)-in(z) , (4.11) 

o  L-ikw 

and where ^(K) is given by Eq. (2.7).  Rather than work out the condition 

for validity of (4.10) in general, we will now specialize to the rase 

of a focused beam observed at its focal point, i.e., we choose R = L. 

It is important to note that (4.10) holds only for locations on the cen- 

tral axis anyway.  Let us introduce the focusing factor ß = kro /L, the 

ra tio of the aperture radius to the radius of the diffraction-limited 

13 
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focal spot (ßf >> 1).  It can be seer from (4.11) that 

^(z) = z/L (4.12) 

n(z) = ßf(L-z)/L  , 

in the focal plane.  Set »(K) - SlitYC^"11'3 where Y ■ 0.033^ - 0.326 

and substitute (4.12) into (4.10) to obtain 

■ßcK2(L-z)2/kL /      2        > 
<l-cos[K z(L-z)/kLl| 

(4.13) 

<6x2>  -tcyraK^J1**.'** 

Replace z by a new variable z' = z/L (we leave off the prime for convenience) 

and let x = K2(L-z)/kL.  These two coordinate changes transform (4.13) 

into, 

= yr(-5/ö)c V/V1/6 

-Ml-«)« 
[l-cos(zx)1 

(4.14) 

f dz(l-z)b/6|[ßf(l-z)] 5/6 Re[ß.(l-z) ± i^i576} 

This result is essentially equal to Eqs. (28) and (29) of Ishimaru 

[5]. For large ß we utilize the asymptotic form for the braced factor 

in (4.14), 

{....H-fjB£-
7/V(1.z)-7/6 ) 

to obtain a beta function in integral form, which yields: 

(4.15a) 

The numerical  coefficient  in Eq.   (4.15)  is  0.102.     The  focusing factor 

ß    being quite  large  in all cases  of  interest,   it   follows  that ^6x   } 

is  small  compared  to unity,  and  that  is  a  sufficient  condition for validity 

of the Rytov approximation.     There  is  no practical  need  to work out  an 

expression for   <6x2>    in the saturation regime because the  log-amplitude 

variance appears  to be  small  for all  conceivable cases  of  interest.     Let 
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us insert ßf = ^Q/'
1
  
intc' M« (^-^a) to obtain, 

OX1) ^ 0.102C 2,,V7/3 - 
(4.15b) 

which is basically analogous to the geometrical-optics result for ampli- 

tude fluctuations in a turbulent medium (see page 251 of ref. 2) with 

scale-size cutoff at £ = r . The result is not dependent: upon wavelength. 

The conclusion that <6x2> is very sma'l for all practical situations 

(r  - 0.5m, and L of the order of sever;1 kilometers) leads to an extremely 

important corollary: amplitude fluctuation;, are „..Muportant in the focal 

plane.  It is therefore no coincidence thai Eq. (3.3) can be obtained 

by a simple geometrical-optics ray-bending argument because refractive 

effects are dominant.  To say it ir yet another way, it appears sufficient 

to describe the distortion of the electric field on its way from the 

aperture to the focal pltM by simple geometrical-optics phase fluctuations 

Let us now consider collimated beams, defined by allowing radius 

parameter R to become infinite in the definition of w ' in (4.6).  In 

that case we find from the new definition and from (4.11) that 
/ 2 4 

1 + zL/k r 

n(z) = 

1 ♦ L2A2r « 
'   o 

(L-z)/kro
2 

1 + L
2/k2r 4 

'   o 

(4.16) 

- (L-z)/kr 

When substituted into (4.10), n(z) clearly yields a negligible attenua- 

tion factor.  Therefore (4.10) reduces to tlU plane-wave form as we ex- 

pect, provided L « kr 2 (i.e., provided edge diffraction is negligible). 

Now consider diverging beams (R < 0) and particularly let 

R « kr 2.  It follows from (4.6) and from (4.11) that 
o 

C(z) = (z+R)(L+R)/a+R)2 = (z+R)/(L+R) 

R 
n<t) = iflCil« ! 

2       2 
kr    (L+R) 

(4.17) 

Here again,   n(z)  yields  a negligible attenuation  in   (4.10),  and now 

(4.10) reduces  to the spherical-wave  form for a point source radiatinr 
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at the location (0,0,-R).  The condition R « kr  is not unduly restric- 

tive. 

In other words, the general beam-wave case is only of academic inter- 

est. Coilimated and diverging beams can be treated, respectively, as 

plane and spherical waves with regard to amplitude scintillation. We 

have already performed a separate calculation for a focused beam which 

indicated that the saturation effect is not observable in the focal plane. 

This entire treatment of beam waves appears to be as exhaustive as is 

required for amplitude effects. 

Some comments on phase are in order.  In the model we have developed, 

there are diftractive and refractive effects.  Diffractive effects are 

important for amplituje effects at all ranges; refractive effects start 

playing a role only in the saturation regime. With phase, refractive 

effects are important everywhere and it appears that diffractive ones 

can be ignored to a large extent.  The most general expression we have 

for phase can be derived from ^q. (A4) of TRV, yielding 

64) = (k/S.
2)^ dZ/d

2K.6e'(K,z)e-i^"(z)cosfK2(L-z)/2k (A.18) 

The last factor describes diffraction corrections which are important 
1/2 

only from small eddies with size * < (l/k) ' , but on the other hand tne 

phase variance is determined chiefly by the large eddies with I »   (L/k) 

Another way of showing the relative unimportance of the cosine factor 

in (4.18) is to determine the mean square of (4.18), ignoring the 

exp(-iK'D(z)) factor.  After the usual universal approximations the co- 

sine factors reduce to 

:os
2[K2(L-z)/2k] = | [l + cos[K2(L-z)/k]j 

= 1 - Hl-cos[K2(L-z)/k]] 

(4.19) 

This shows that < (6<t>)2>   reduces to < («♦ ) > - < «X > where H& is 

the phase (geometrical-optics) without the cosine factor. Our results 

indicate that < (Sx > << l,  nearly everywhere except in the initial part 

of the saturation regime whore ^^x > can approach unity.  Consequently 

<u<t>)2> - <^V2> ■ 
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The significance of ray bending upon phase is easily illustrated 

from (4.18), ignoring the unimportant cosine factor, which can then be 

written. 

6<p •*/ 
■a) 

ds6e(s). (A.20) 

where s is the ray-path parameter initiating at s = 0 and terminating 

at s(L). We compare 84 to 6(ji given by a straight path: 

64) 
8 -/ 

dz6e(0,0,z) (4.21) 

An estimate of  the  difference  is given by 

• L 

g 

1 fL     - m ko(z)' J   dzVT6t(0,z) 
o 

6(M0    ^ k/   dz[6£(p(z),z)-6e(0,z)] 

(4.22) 

kD(z).[dn(z)/dz]z=L 

2 

2 
i u   rdP   (z)l 
2       l     dz     Jz=L 

If we utilize  the  approximate relationship 

< n2(Z)>    "  Cn
2<m

l/3
Z
3, «e  find  that  60-6^  ~  C**^     ^ kL  .     This  is 

extremely interesting because  the Rytov approximation has been shown 

to be valid when C 2< l'3kL2  «  I.    Thus  the  equivalence of 60  and 
n    m 

64  ,  the unimportance  of ray bending,   is  once  again demonstrated as a 

sufficient  condition  for the  Rytov approximation.     A corollary of this 

statement  is  that  ray bending must be considered  in the  saturation regime 

where   (4.20)  can differ appreciably from  (4.21).     In short,   Eq.   (4.20)  is 

a    non-trivial  extension of   (4.21),  the usual  phase  approximation,   into 

the saturation regime.     The  question of the  statistics  of   S* cannot be 

fully answered  at  this  time because there  are  not  enough measurements  in 

the saturation regime.     Buser and  Born  Til]   have  observed  discontinuous 

phase  jumps  that  seem to point  towards  the  crossing  of diverse ray bundles 

in the  image  plane.     More measurements  are needed  to confirm this  phenomenon 

which has been  questioned. 
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5.  THE HERRMANN-BRADLEY NUMERICAL CALCULATION OF IRRADIANCE 

Equation (2.4) for plane waves can be written as 

|| 4 (2ik)-1VT
2B •• -^ 6eB = 0 (5.1) 

Our method of solving this equation for waves in turbulent air has been 

to convert it into an integral equation and to utilise small-angle approxi- 

mations. An alternative method has been to set B = exp'l' and to derive 

an equation for ty  from (5.1). Our saturation-regime results were obtained 

by taking ray bending into account in the equation for ♦, i.e., by in- 

tegrating along rays.  Herrmann and Bradley [6] have attempted numerical 

integration of Eq. (5.1) using acceptable spatial-spectrum properties 

of 5e to select samples of an ensemble.  They then obtain laser-beam pro- 

files of intensity that - ideally - should average to what can be cal- 

culated but have the advantage of giving as much detail as ia desired 

(means and variances do not give much detail).  A disadvantage of the 

method is that it costs time to produce a profile, and tlat it is perhaps 

difficult to produce enough to check the ensemble statistics. 

The main question is whether the numerical solution is valid or whether 

the approximations made in generating it are too severe. We address our- 

selves to this question here. 

Herrmann and Bradley convert (5.1) to an interaction representation 

by introducing the WKB phase increment 

and by transforming B to B = Bexp(-i <S(|)). Introduce a new differential 

operator H, 

1_ 
2k 

-i6(J) ^ 0  i6(j) 
gV 2 t g (5.3) 

such that the Laplacian V  wc rks not only upon exp(i(S't) ) but also upon 

whatever function of p follows H within a terminating parenthesis. The 

transformation B -•■ B and the definitions (5.2) and (5.3) then yield, when 

substituted into Eq. (5.1); 

3B/3Z - i(HB) = 0 (5.4) 
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Now, a formal but not very useful way of generating a full solution 

of (5.4) is to divide both terms by B and then integrate over z.  This 

yields 

B(z) = «pi-iy dtlfB*
l(«l)HÄ'(« )]). (5.5) 

"Ihe crucial approximation made by Herrmann and Bradley in solving (5.5) 

is to replace exp(x) by (l+x)/(l-x), where x is the exponent in (5.5). 

There are other approximations, but they are less critical.  The ensuing 

implicit approximate equation in B is then solved.  If the approximation 

is to be a good one, we must demand that 

z 

l-i/dijl"1^)^^)]} « l , (5.6) 
o 

and the error is to third order in this parameter.  Transform B back to 
* 2 

B, and H back to V  to obtain 

g/dz1B-
1(Zl)7T

2B(z1^ « 1 (5.7) 

Now replace VT B^) in (5.7) by the other terms of Eq. (5.1) to obtain: 

r z 

YJ     dz16e(z1)-/*dz1B'
1(z1)9B(z1)/9z1 | « 1 (5.8) 

Replace B by B = exp(x + 16$) where X is the log-amplitude and ty 

the phase of the normalized field (both are real quantities), and utilize 

(5.2) to obtain 

|if6()) -6(()] + x I « 1 (5.9) 

Certainly both real and imaginary parts of (5.9) must be small 

separately in order for the inequality to hold.  It follows that X << 1 

is required. As X is a stochastic quantity, perhaps normal in distribu- 

tion (or at any rate not very differently distributed), it follows that 

its variance <6x ? must be much less than unity.  This restricts the 

Herrmann-Brad ley procedure to situations where the Rytov approximation 

is valid.' 
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We have shown in section 4 that amplitude fluctuations are small 

and properly described by the Rytov approximation in the focal plane. 

Thus it follows that the Herrmann-Bradley procedure may yield accurate 

results for focused laser beams.  On the other hand, the procedure may 

be seriously in error when utilized to describe collimated and diverging 

beams under conditions under which the parameter combination 
„ 2, 7/6 11/6 . 
C k ' L '  is not small. 
n 
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6.  THE EFFECTS OF INTERMITTENCY 

Most of the fluctuations of laser-beam parameters such as irradiancc- 

and angle of arrival in turbulent air are directly due to fluctuations 

in the refractive index.  A major portion of these are due to temperature 

fluctuations.  The study of temperature fluctuations in turbulent air, 

e.g., as discussed by Tatarski [21, yields the inputs to the analysis 

of these fluctuating phenomena.  Parameters such as the refractive-index 
2 -1 

structure constant C  and the scales of turbulence I     (or <   ) and L 
n o     m        o 

derive from the study of temperature fluctuations in turbulent air.  In 

recent years, workers at NOAA in Boulder, Colo. (R. S. Lawrence, G. Ochs, 

et al.) in particular, but not exclusively, have pointed out certain 

large-scale, low-frequency temperature fluctuations that have been ex- 

cluded in prior treatments.  These give rise to a class of phenomena that 

do not appear to be sharply defined.  Together with tne underlying cause 

these phenomena are referred to as "turbulence iutermittency". 

Recently, Kerr [7] has discussed some of the effects of intermittency. 

He models the atmosphere into a number of irregular columns (slabs in 
2 

his specific treatment) with widely varying values of C  , ind computes 

the effect upon the usual calculation of log-amplitude scintillation. 

Seemingly separate from this model is a discussion of finite-time averag- 

ing which can give rise to a data spread in apparently constant statis- 

tical parameters such as means and averages. 

It is not very clear, in our opinion, that the so-called intermittency 

f turbulence can be defined and treated as some phenomenon separate from 

what is otherwise just a random sampling of a statistical process with 

known probability distribution and parameters.  We will try to approach 

a definition operationally as follows. 

Out of a host of statistical parameters describing the behavior of 

laser beams in turbulent air, certain variance parameters have been 

chosen for analysis because they are relatively fundamental and easy to 

measure. iWo random variables, the variance of which we have analyzed, 

are the log-amplitude and the angle of arrival. A common mode of des- 

cription of ^oth of these parameters as well as of others such as phase 

be giver in terms of integrals, 
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at) m\j**xjf*   f Ä«) 8c (K,g(t) 
ATT „ 

(6.1) 

Here, 6e (K.z.t) is the transverse two dimensional Fourier transform of 

the deviation in dielectric permittivity 6etr,t), and f(K,z) is a determi- 

nate function.  For example, if r(t) is the log-amplitude, then f(K,z)= 
2 

- (k/2) sin[ K (L-z)/2k] in the Rytov approximation for plane waves.  If 

^(t) is the angle of arrival vector, then f(k,z) is the vector  -ik.  In 
"* 2 

order that C(t) describes the Rytov phase we set fCK,z)= (k/2) cos[K (L-z)/2k] 

For the purpose of this section it does not matter what form f(K,z) takes; 

Eq. (6.1) is sufficiently general for describing an operational definition 

of intermittency as it monifests itself in the optical phenomena. 

Now define fl mean square C, = \^ / ; it is a variance as well as a mean 

square when\0 =0.  However, we cannot measure C^. .  What is really measured 

is a quantity, 

1   f Cj(t,T)= f  / 
' ^2 dt^^t,) 

(6.2) 
t-T/2 

If (6.1) is substituted into (6.2), then the time-dependent part to scruti- 

nize closely is 

-t+T/2 i    r (6.3) 

t-T/2 

Consider a random function g(t), with zero mean for convenience.  Let 

c+T/2 
gT(t) 

i    r ■ f   J       dt,g(ti) 
t-T/2 

(6.4) 

and let <g> be the ensemble average of g.  The temporal mean g (t) will 

fluctuate around ^gX and leos so as T increases.  If the statistics are 

stationary, then <g> will be the limit of g (t) as T-*30 , and it will in- 

deed be independent of t.  Hunt and Collins [8] have discussed this matter, 
2 

and it is rather easy to reconstruct their result for the variance aT of 

gT(t) around <g>. 
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(r/T)o 
2 (6.5) 

where a2 is the ensemble variance of g(t), and 1 is the integral time of 

the normalized auto-correlation of g(L). Eq. (6.5) is correct only for 
2 2 

T « T.  In the opposite limit, 0  «ill vary randomly as g (t) does be- 
1 ■ 

cause the frequency 2TTT lies beyond the frequencies of interest in the 

power spectrum of g(t). When t «T , we may replace the time average by 

the ensemble average to good approximation. 

Consider the time ^0    to  be the longer of Lo/UT or Lo/oU where UT is 

the wind velocity component across the laser beam, and 50 is the (more or 

less) Isotropie root-mean-square wind velocity. Let averaging time T be 

much greater than t .  Our cardinal assumption for (6.3) is 

|      J dt'6e(K1,z1,t
,)6£(K0,z9t'i 

^+T/2 

/ 
t-T/2 

4 

i»"r vr (6.6) 

4 r T t-T/2 
^,Cn

Z(z1,t
,)$2(K,Az)6(K1+K2) 

where $ (K,Az) is the partial Fourier transform of the autocovariance of 

6e(?) denoted as F(K ,K ,Az) by Tatarski [2], et al., and «(K^) is a 
^   y ... 

two-dimensional Dirac delta function. The assumption implies also tha* 

r o the time variation in C 2   (z,t ^ is slow compared to the time TO d^ined 
n 

above. We now insert (6.6) into Eq. (6.2) and utilize the universal 

approximations that c£ 

creasing Az to obtain 

approximations that center around the rapid decay of $2(K,Az) with in- 

C2(.t,T)=-12  /"'dz rd2Kf2(K,z) MK) 

t-T/2 

t+T/2 '  2   ' 
dt Cn (Z,t ) (6.7) 
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2 
where # (K ) il given by (2.6) and (2,7). The variance C^(t,T) is a 

fluctuating quantity to the extent that the last integral factor is. 

C2(z,t ) is time dependent, or - weaker statement- if the integral 

If 

/ 

dl C ^z.t') f2(K,Z) n 

is a time varying quantity, then so is C2(t,T). Considering it established 

that T >> T  , we can see two possible causes of time variation: 

(i) Non-stationary statistical behavior of Cn
2(z,t ) because T is so 

long that the heat input into the atmosphere changes (diurnal 

patterns). 
2   ' 

(ii) Large-scale spatial variation in Cn (z.t ), associated with lengths 

L such that time I,, /U is not much smaller than T (obviously Lc » Lo) . 

This second effect appears to be most basic to the concept of interraittency. 

In order to proceed more specifically, we assume a large-scale frozen- 

flow model. That is to say, we assume that large-scale variations in 

C ^,0 are blown across the line of sight by a wind with velocity vector 
n * 

U (unit vector U) not necessarily perpendicular to the line of sight. The 

assumption implies at point r= (0,y,z): 

Cn
2 (?,t,)= Cn

2 (r- Ua'-t), t) (6.8) 

We will utilize this in (6.7). However, first we will assume a Kolmogorov 

spectrum derived from Eq. (2.7) for $(K) in (6.7) and formally perform the 

d2K integration. Thus (6.7) becomes 

,t+T/2 A. ,t+T/2      2 

:2(t,T)= J   dz f(z) - r  df cn  (z,t ) 

t-T/2 

(6.9) 

The function f(z) has the following form: For log-amplitude, f(z) 

0.563 k7/6 (L-z)5/6 

Similar and related 

2 5/3 
For phase it is proportional to k Lo    , and for 

2 1/3    2 
the focal-area parameter rT_  it is 3.9K   (L-z) 

LB lu 
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forms for f(z) result, depending on which parameter f,(t) is studied in 

Eq. (6.1).  Now insert (6.8) into (6.9) and transform time variable t to 

spatial coordinate s = Ut (s measures distance in thi? wind direction): 

L UT/2 

C^it ,T) = / dzf(z) ^     J dsCn
2(?-sU,t) (6.10) 

The mean of (6.10) yields, under the assumption (for simplicity) that 
2 ^ 

the mean of C  does not depend on r, 

<Cr
2>   =    f    dzf(Z)<Cn

2> (6.11) 

2 
In order to compute the variance of Cf (t,T), we will introduce a spec- 

* 2 -» trum $ (K) of the large-.^cale fluctuations of C  (r) via the transform 
c n 

2,* 2\2 

-ydJK<tc(K)exp[-iK.(r1-r2)] . 
(6.12) 

Using (6.12), we can compute the variance of C- (t,T) from the average 

of the square of (6.10) minus the square of (6.11). The two re-ulting 

ds Integrations are easily performed to obtain. 

I» (K) 
c 

n(K-UT/2) f   .   ;.   .    *  * | 
Y^j2— J   dzf (z)exp(iK,z) | 

(6.13) 

The  factor   |sin(K-UT/2)/(K.UT/2)|     acts as a  low-pass  filter particularly 

in directions normal  to  z,   upon  the spectrum $   (K)  of  fluctuations  in 
2 c 

C     (z).     It  suppresses contributions from scale  sizes t <<  UT/2  in 

analogy to  the  time-dependent  case  in  (6.5). 

Intermittency thus causes data spread  in  the variance  parameter for 

relatively short  averaging  times T,  and  the variance of  this data spread 
2 

for a  seemingly steady parameter C-     (which would be constant  at very 
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large T under statistically honogeneous conditions) is given by Eq. 

(6.]3). Consider as an example the log-amplitude { = InA in which case 

C-2  is the lo;-amplitude variance.  Then, Eq. (6.13) expresses the 

variance of the data spread of a finite-time log-amplitude variance in 

terms of the wind velocity U and the large-scale fluctuations of 

C 2(z) that constitute • (K).  We note that the data-spread variance de- 
n c 
creases with increasing wind velocity when UTT/2 is sufficiently large 

with respect to the important scale sizes.  This trend is clearly visible 

in the log-amplitude variance measurements by Kleen and Ochs [9]. 

Intermittency, then, appears to be a large-scale variation in 

C 2(z) as far as the optical effects are concerned.  It affects the sta- 
n 
tistics of optical quantities such as phase and amplitude when these sta- 

tistics are determined over time periods not very long compared to the 

time in which a typical large-scale variation crosses the beam.  Its char- 

acteristics are determined by the (unknown) spectrum ^(K) which in all 

likelihood is highly anisotrop'.c and strongly characterized by local 

terrain and weather conditions. 

The large-scale variations in refractive index probably have no di- 

rect optical consequences because both refractive and diffractive bending 

re governed by small-scale variations. An intermittent variation of 
2      2 

,t:atistical parameters such as C  and C. is brought about.  Perhaps 

this variation should be regarded in the same way that a short-term (1-5 

seconds) measurement is an instantaneous realization of which one can 

only give the statistics.  Here, that would Imply knowledge of (6.13) 

which in turn requires knowledge of • (K) which is probably not a uni- 

versal function but a strong one of terrain and weather conditions locally, 

That may render attempts to determine 0 (K) in general ineffective a 

priori.  In this sense it remains unclear whether intermittency phenomena 

can be distinguished from random sampling of a statistical process with 

known probability distribution. 
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7.  ANGLE-OF-ARRIVAL SPFCTRUM AND MICROSCALE 

The power spectrum of the angle of arrival of a ray has been cal- 

culated in TRIV, and an extension of this calculation for the angle-of- 

arrlval difference of two rays is given in TRVI. An important aspect 

of this power spectrum (we consider it for one ray because the inter- 

ferometer situation does not change matters significantly) is its high- 

frequency behavior.  Let a) = UT/Lo and ^  ■ KM^ (we assume frozen flow 

for the time being; the alternative situation has been discussed before). 

The power spectrum Wfl(a)) can then be written for U >> wT as 

W0(W) = 4YC 2LL "1/3Wfl(w,5/6), 9       n  o    D 

T, ,     c/tx   ^(1/3) /n   Jjj we(ü,'5/6) =f(576y Sf ^ 
-2/3 

for Co < fL (7.1) 

uX. (jj„ 

-l -(w/O.)' 
(jr)   e for tu > 0. 

-2/3 dependence That is to say, there is a very sharp transition from an U 
2  2 

for oj < f to a steep gaussian decay ~ exp(-(i) /flL ) when U exceeds U^.. 

The question arises whether this steep transition can be used to obtain 

a mic.roscale measurement by determining Q- under steady wind conditions 

(so that < may be retrieved from fL, ■ < U ). v        m T   m T 
It appears to us that non-zero aperture limitations prevent an ob- 

server from finding this transition, even in the idealized noise-free 

case.  In actual fact, the beam is not infinitesimally thin; it has a 

nor-zero thickness d (e.g., d is a gaussian halfwidth parameter of a 

thin collimated beam).  Temperature fluctuations at scale sizes I larger 

than d do indeed displace the entire beam (beam wander) as if it were a 

ray, but smaller ones with ?, < d decompose the beam into parts (beam 

spreading).  It is quite true that the sum of both effects would be 

observed in long-term statistics to be governed by a variance 

•^ö2^ "■ C 2Li where ft is the microscale, but the measurement is 
^    n  o o 

of the displacement of the center of irradiance, or of some related 

quantity which is governed by a variance \9 / C 2Ld~1/3.  Tatarski [2; 
n 
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has computed a power spectrum for beam wander of a beam of thickness d, 

and he finds a spectrum that resembles (7.1) for U < U/d.  However at 

Co ~ U/d the minus two-thirds behavior is terminated and a transition to 

a minus eight-thirds power of frequency occurs.  The transition point 

is now characteristic of d rather than of £. A second transition at 

a) ~ S^ is no longer sharp and presumably hidden in noise. 

The spectrum of (7.1) would indeed yield microscale information if 

aperture d were less than Si   .     Unfortunately t can be very small (milli- 

meter or less) indeed and the intensity of such narrow beams are probably 

too weak foi use in this way.  Therefore the limitations in extracting 

a microscale -neasurement from an angle-or-arrival spectrum appear too 

stringent at present. 
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8.  MEAN FLUCTUATION RATES 

The power spectrum of a fluctuating quantity contains much information 

about the time scales or the fluctuation rates of that quantity.  For 

example, the power spectrum of a fluctuating amplitude of an electric field 

tells the energy of the field as a function of frequency. The integral 

of the power spectrum over all frequencies is simply the total energy (on 

the average) of the fluctuating field.  A range of frequencies (fluctuation 

rates) ranging from U/L to UM roughly (where U is a typical velocity 

driving spatial irregularities across the laser beam) contributes to this 

total energy. One might wonder whether there is a dominant frequency. 

Perhaps inspection of the power spectrum might show up such a dominant 

frequency.  However, it requires quite a bit of data processing to produce 

a power spectrum, and then it might be somewhat difficult to read a 

dominant frequency out of it.  Furthermore, it is convenient to iave a 

simpler more direct measure of the rate at which a random quantity, say 

the irradiance, fluctuates. A simple measure is the average number of 

zero crossings. The observer takes a certain time record of the irradi- 

ance, determines a mean irradiance level during that time, and then counts 

the number of times that the actual time record of irradiance crosses the 

mean level.  It is clear, intuitively, that this count is a measure of the 

graininess, the irregularity of the fluctuating quantity. 

Beckmann [10] gives the mean frequency of zero crossings as of/TT where 
2 

the variance parameter a. of the random quantity f is given bv 

£_ r<f(t)f(t-K)>i      _  Rf"(o) 

)T2 L<£(t)£(t)> J T = 0 " ~ Rf(0) 9T
: 

(8.1) 

We will compute this quantity for angle of arrival, amplitude, and phase. 

Angle of Arrival - The autocorrelation rf the angle of arrival of a 

ray is given by Eq. (31) of TRIV which is written equivalently as. 

MT) = 2YC 2
'.L "1/3 

0 «10 
y dx x 

. 2L 2 
.,.. . .-11/6 X m o 
(1+x)    e 

(8.2) 

- J 0.TT^)e-
x(AwT/2)" 

ov T  ' 
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where Y = 0.033TT2 -  0.326. ^ = UT/Lo. Aw = 4AU/Lo/3. 

This autocorrelation yields the variance for x = 0, namely 

R (0) - 3.9ir(7/6)C 2K 1/3L. The second derivative of the autocorrela 

tion at T = 0, namely R"(0) is easily computed from the second line in 

Eq. (8.2) which yields 

32 FT . / ^ -X(ACJT/2)
2
] 

—- I J (cu T/x)e J 
„ 2 ^ o  1 T T=0 

= - f (u)TW) = - |(v2/Lo
2) 

(8.3) 

Un- 
where v2 = U 2 + 16AU2/3 is a variance of velocity that combines the 

frozen-flow and the random-flow velocities into a single parameter, 

less U « 0, the difference between v and UT is negligible. Using (8.3) 

in (8.2) we apply the definition (8.1) for angle of arrival (f = 6) to ob- 

tain 

2.   2 

6f 2 .-11/6 "X/I<m 
dxx   (1+x) e 

V/r ri       -11/6 -^mV 
dxx(1+x) e 

(8.4) 

In numerator as well as in denominator, it is permissible to replace 

1+x by x because <mLo » 1. It is then easily established that 

2  ^  / /o ^ a9 - j-  (v/l0) 
(8.5) 

Thus a non-surprising result has been found in yet one other way: the 

angle-of-arrival fluctuations are governed by the smallest turbulence- 

scale sizes.  In practice (see section 7) the graininess will probably 

not be determined by ilo but bv the diameter d of a pencil beam by which 

a ray is simulated. Thus, the fluctuation rate v/^ or v/d is a measure 

of the most important rate of angular beam deviations. 

Log-amplitude - The log-amplitude variance in the Rytov approximation 

is given by 

<6x2>  =YCn
2k7/6L11/6   /dxx-^Vx^sinx) (8.6) 
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in which expression the variable x was obtained from the wavenumber vari- 
2 

able K through the transformation x = K L/k.  As usual, 

Y = 0.033Tr2  0.326.  We generalize <^6x } = ^6x(t)6y(t)> to 

R (r) = ^ iSx(t+T)6x(t)^ by the same procedure as in the case of angle- 

of-arrival, i.e., we replace ^(K) by 

nK)J (KUTT)exp(- \  KAU
2T2) 

O   T        i 
(8.7) 

(see Eq. (30) of TRIV).  After transforming K to x, and utilizing the fre- 

quency variables 

(8.6) to obtain 

quency variables UL, and Aco, we insert the extra factors in (8.7) into 

RA(T) - YCn k 
2,7/6,11/6 J '.   -11/6,. -1 , , -^''m L dxx    (1-x sinx)e 

(8.8) 

. .   -, -y(A(i)T/2)Z 
x Jo((JJTT/y)e 

2 2 
where y s x(kL /L).  The calculation of a 

repeated by utilizing the intermediate step (8.3) to obtain. 

-RA"(0)/RA(0) is easily 

2  kv2 rA  -5/6n  sinx. "^^m V T 0
A 

=2rJ dxx   (1--T-)e        // ' 
-11/6,,  sinx.     ra 

dxx    (1 )e 

(8.9) 

The integral in the denominator can be approximated well by ignoring the 

exponential factor.  It then yields the factor TT/[2r(17/6)sin(7Tr/12) ] in 

the denominator. The integral in the numerator can be approximated by 
9    1/6 

ignoring the sinx/x term, and it yields a factor r(l/6)(K L/k)   .  The 

result is 

/< 2
LV

/6 

2 = r(l/6)r(17/6)sin(7TT/12) fjnN  (kv2/L) 
V TT \  k ' 

■ 2.95(K 2/k)1/6(kv2/L) 
m 

(8.10) 

7 1/6 
Bearing in mind that the factor (K L/k)   is of order unity in D m 

optical propagation problems of interest, we note that the rate of zero 
1/2 

crossings is given b> the frequency v(k/L)   , i.e., by those irregularities 
1/2 

with scale size (L/k)  . That is in good agreement of course with the 
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interpretation of  the  spatial  covarlance of  log-amplitude which  is also 
1/2 

governed by a  length  -   (L/k) 

Phase  -  Finally,   the  calculation  is easily repeated  for  the  pnase  in- 

crement  which we write 

S,p K/ dz5c(z,t)  , (8.11) 

where a somewhat unimportant filter factor has been ignored.  Define 

RXCT) = <6(Ht)64)(t+T)^ •  We obtain it from ^(0) by means of the sub- 

stitution (8.7) and get 

R^d) = 4YC n
2k2L  /^dKK(K2+l72r11/6e m Jo(KUTT)exp[-4(KAUT)2/3] 

2  2 2YC    k LL n o
5/3 rdx(i+x)-ii/6Jo((oTT/?). 

-x[(AtüT/2)2 + 1/KJLJ
1
] 

(8.12) 

Note that this yields the well-known phase variance RAO)  ■ \ 6^ ^ = 

(12/5)YC 2k2LL 5/3.  Utilizing (8.3) we obtain 
no 

/ 2L 2 

R ''(0) = YC 2k2LL -1/3v2 rdxx(l+x)-
11/6e"X ^    0   . 

4)       n    o     ^ 

which can be approximated well by replacing U+x) »y x to yield, 

(8.13a) 

1/3  2 2  -1/3 2 
R^(0) .Yr(l/6)«mLo)

1/3Cn
2k2LLo 

/3v (8.13b) 

Thus we find for the zero-crossing rate parameter. 

2  5 r/1 ,,,, 1/3 2/T 5/3. 
% =nr(1/6)(Km   V /Lo ) (8.1A) 

which result indicates that phase fluctuations appear to be governed by 

a rate ~ v/(L   Ä l    ),  which is not very different from v/L because 
1/fi  0   0 

(I  /L )   is of order unity, 
o o 

The calculations of zero crossings thus seem f:o indicate that angle 

of arrival, amplitude, and phase each have their jwn typical fluctuation 

rate f namely. 
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angle of arrival : in  ~ v/l 
0     0  1/2 

log-amplitude   : f ~ v/(L/k) ' 

phase : f. . v/L 5/6Ä 1/6 . v/L 
(poo        o 

The full power spectrum Indicates a spread of rates between v/L and 
o 

»/t  (there is an artificial smoothing of the spectrum between a) = 0 and 

M - V/L0 tht has no physical meaning) but these typical rates are dominant 

in the sense that the average number of surges and fades of signal records 

are given by them. 

1 

I 

: 
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